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ON THE EFFECT OF INITIAL STRESSES ON THE OPENING OF A CIRCULAR CRACK* 

L.M. FILIPPOVA 

Using the theory of smalldeformationssuperposed on finite deformation, theproblem 
of loading by uniform pressure on the surfaces of a plane circular crack in and 
initially extended or compressed (along the crack) elastic medium is considered. 
The model of incompressible isotropic material of a general form is used. The 
problem is solved by reduction to a dual integral equation. It is established that 
the initial stress does not change the order of the singularity of the stress field 
near the rib crack, but affects the character of stress distribution alongthe crack 
rim and the displacements of the crack edges. 

The plane problem ofcracksof bodies with initial stresses was studied in /l/. The three- 
dimensional axisymmetric problem of a circular crack was solved in /2/ for a material of a 
particular form. 

1. The equations of equilibrium linearized about the state of a uniform finite deforma- 
tion of an isotropic incompressible elastic material can be written in the form /3- 5/ 
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where z,, are the Cartesian coordinates in the deformed body, urn are the components of the 
displacement vector, i& are the components of stress in the initial deformed state. If the 
coordinate exes are directed along the principal axes of the stress tensor of the initialstate, 
then for the quantities 8,k the representations /4,5/ are valid (the formulas not written out 
are obtained by circular permutation of subscripts) 

(1.2) 

where hi are the principal stretches in the initial state, II is the specific potential energy 
of the material represented as a symmetric function of principal tensions, and p is the func- 
tion of additional pressure. 

Let us consider the unbounded space of incompressible elastic material weakened by an 
infinitely thin plane circular crack (slit) lying in the horizontal plane x3 = 0. 

We assume that the space is subjected to a finite deformation , produced by a uniformload 
applied at infinity and acting in the plane of the crack. Evidently with such loading the 

presence of the crack does not manifest itself, i.e. a uniform deformation in a uniform stress 

field 
a1 = a, = a = KY*, t,, = t,, = t = arr, - aSrr3 (1.3) 

t,s = t*3 = t,p = t,, - 0 

corresponds to the stated problem. 
On the described finite deformation is superposed a small deformation produced by load- 

ing of the crack surface by a uniform pressure of intensity 2. By virtue of the assumption 
of smallness of the additional deformation the problem is considered in linearized formulation. 
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Note that the superposition of solutions of the stated problem and the problem of uni- 
form small deformation in the originally stressed space without crack, which occurs under the 
action of a uniformly tensile vertical load % yields the solution of the problem of opening 

the crack with unloaded surface by forces applied at infinity. 
For axisymmetric deformation in the presence of initial stress-strain state of the form 

(1.31 the system of equations (1.1) and (1.2) is written as follows: 

where rr Z t= SQ are cylindrical coordinates in the initially deformed body, u and w are com- 
ponents of displacements in the radial and vertical direction, respectively. 

The problem of a crack formulated above is equivalent to the boundary value problem for 
the system of Eqs.Cl.4) in the half-space z >O with the following boundary conditions in 
the plane 2 = 0: 
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( 
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(1.6) 

where a is the radius of the circular crack in the initial deformed state. 

2. We seek a solution of system (1.4) in the form of integral Hankel expansions 

(2.1) 
ll 

From Eqs.tl.4) we have 

U = A, (a) wJ, + AP (a) &L W = Al (a) E, + A, (a) & (2.2) 

Q = aA, (a) q (v - P + v%‘) J’& $ aA, (a) o, (v - p + VOP) EP 

(Et = exp (-ao&, i = 1, 2) 

where @I, @a are the roots of equation 

w'-(P - 2v)& +x = 0 (2.3) 

which have a positive real part. 
Taking into account thatxv-'= hah8*a> 0, the solution of Eq.(2.3) can be represented in 

the Descartes-Euler form 

Zo=F~C~_,A*=~v-'-222~ 12.4) 

From (2.4) follows that the necessary and sufficient condition of existence of two roots 
with positive real parts is the inequality 

A+> 0 (2.5) 

When condition 12.5) is violated, all roots of Eq.tZ.3) are pure imaginary, i.e. the 
boundary value problem (1.41, (1.61 has no solutions that attenuate as z-+ 00. 

Referring to 11.51, we see that conditions (2.51 are satisfied for the following constr- 
aint on the function of the elastic potential II: 

iln, - a,rr, 
S-b >O (2.6) 

Relations (2.6) differ only slightly (the sign > instead of >) of constraint on the 
elastic potential of incompressible material, which are included in the number of necessary 
and sufficient conditions of fulfilment of Hadamard inequalities /6/, the criterion of real- 
ity of plane wave velocities in an initially stressed field. 
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From the first boundary condition of (1.6) we obtain 

A* - - (1 + 01'1) (i I- oA-'.4I 

According to (2.2) and (2.71, we have 

u (t, 2) = 5 ( 4 (a) w% - +j+$%E2) J1 (ar) da 
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Satisfying 
tegral equation 
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the boundary conditions (1.6), we obtain for the function Al(a) the dual in- 

3. Equation (2.9) is 

Using /8/, from (2.9) and (3.11 we obtain 
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f -41 (a)J~(ar) da=O, a<r<m 
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in the class of equations whose solution is of the form /7/ 

Al(a)=~@(h)z(~ _ sinaa 
alaz ) (3"l) 

(3.2) 

Formulas (3.21 show that for any incompressible isotropic material the order of the sing- 
ularity of stresses near the crack tip is the same as in the problem of a circular crack with- 
out allowance for initial stresses /9,10/. 

As an example, let us consider the case of neo-Hookian material, for which the elastic 
potential is specified by the formula 

II = '/& (aa* -I- V + as8 - 3) (3.3) 

where G is the shear modulus. From (1.5) and 12.4) we have 

yt: G&-4, p = C(P_t a-9, x = C&V, WI= 1, o*= a? (3.41 

For the displacements of the upper edge of the crack from (3.2) and (3.4) we obtain 

s= ""t,;Y$)r ) 2);1(1 + ?"a) 
w=-&WW’-=% N(L) = h’+he_,_3Ra_i (3.5) 

Formulas 12.8) for a neo-Hookian material reduce to the form 

(3.6) 

A, (a) = -$$- %N (b) (* - sinao 
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When I-1, i.e. when initial stresses are removed, formulas (3.5) become the solution of 
the problem of a crack in an unstressed body /9,10/ (for the case of Poisson's ratio equal to 
0.5, since the material is incompressible). 

The relations (3.5) show that the presence of initial stresses in the body results inthe 
appearance of radial displacements on the surface of the crack extended by a uniform pressure. 
Moreover, as shown by (3.6), the initial stresses affect the character of distribution of 
stresses and displacements around the crack edge. 

The coefficient N(5) appearing in expressions for displacements (3.5) in the interval 

h'<h<=, where h*%0.667, is monotonically decreasing; and N(k)-+-* as h+h*. When the 
magnitude of initial compression approaches 1*, the displacements of the crack edges increa- 
se to the infinity. This means that for h<h* the uniform stress-strain state of the com- 
pressed body with a crack is unstable. Note that the critical value of the initial compres- 
sion h* coincideswiththat of h, at which the instability of the compressed half-space /ll/ 
is initiated. 
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